1,004 research outputs found

    Practical formulation of the relation between filter specifications and the requirements for integrator circuits

    Get PDF
    The design of integrated, high-frequency, continuous-time filters has made considerable progress in the past few years. As the signal frequencies increase the design of the integrator circuits used in most of these filters becomes more critical. To give direction to the circuit design, minimum specifications for the gain and phase of the integrator circuits would be helpful. A practical method for obtaining these integrator specifications from the filter specifications is developed. The method is applied to a sixth-order Chebyshev band-pass filter, and the result is verified by computer simulatio

    Transconductor and integrator circuits for integrated bipolar video frequency filters

    Get PDF
    A description is presented of novel transconductor and integrator circuits which can be used in integrated video frequency filters in bipolar technology. The transconductor consists of a parallel connection of a passive nominal transconductance and an active variable transconductance, resulting in good high-frequency performance up to 70 MHz and less than 1% linearity error for input signals up to 2V pp. The integrator incorporates an operation transconductance amplifier circuit which provides a tunable integrator phase. Simulation results for all circuits and for a fifth-order elliptic low-pass filter with a nominal cutoff frequency of 5 MHz are presente

    High speed VLSI neural network for high energy physics

    Get PDF
    A CMOS neural network IC is discussed which was designed for very high speed applications. The parallel architecture, analog computing and digital weight storage provides unprecedented computing speed combined with ease of use. The circuit classifies up to 70 dimensional vectors within 20 nanoseconds, performing 20 billion (2*1010) multiply-and-add operations per second, and has as high as 28-42 Gbits/second equivalent input bandwidth with less than 1 W dissipation. The synaptic weights can be directly downloaded from a host computer to the on on-chip SRAM. The full-custom, analog-digital chip implements a fully connected feedforward neural network with 70 inputs, 6 hidden layer neurons and one output neuron. A unique solution, a single chip neural network photon trigger for high-energy physics research is provide

    Resonant diaphragm pressure measurement system with ZnO on Si excitation

    Get PDF
    The principle of measuring pressure by means of a resonant diaphragm has been studied. An oscillator consisting of an integrated amplifier with a piezoelectrically driven diaphragm in its feedback loop has been built. The oscillator frequency is accurately proportional to the square of the pressure in the range of 60 to 130 Torr.\ud The frequency range is 1324 to 1336 Hz (this range being limited by a spurious mode which could be suppressed by better processing) for a 25 mm diameter diaphragm made of a silicon wafer and with PZT ceramics as driver and receptor. We have made an integrated version (1 Ă— 1 mm2) of a square resonant diaphragm pressure guage by selective etching of (1 0 0) planes with ethylenediamine. The piezoelectric driving materials was sputtered zinc oxide. A driver was deposited midway between the bending point and the point of greatest curvature.\ud A receptor was located at a symmetrical position to give a optimum transfer condition.\ud The integrated current amplifier had a low impedance differential input stage, two gain cells and a high impedance output stage. These electrical conditions ensured maximum elastic freedom of the diaphragm. A digital circuit in I2L technology has been designed and made with eight-bit parallel read out of the frequency. This circuit may be directly connected to a microprocessor. The whole system contains the sensor chip, the analog amplifier chip and the digital chip, all in compatible technology.\ud \u
    • …
    corecore